Structure from Motion

What??
Structure from Motion

What??

Structure: 3D information

Motion: Camera motion
Structure from Motion

What??

Structure: 3D information
Motion: Camera motion
Structure from Motion

What??

Structure: 3D information

Motion: Camera motion

Looks familiar?
Exit survey: Computer Vision II – 3D Vision

- Why don’t we need to know the original object’s size when we have stereo vision?
- What’s the operating principle of the XBOX Kinect (R) motion tracker system?

Entry survey: Computer Vision III – Structure from Motion (0.25 pts)

- Can you think of a way to apply the 3D vision alignment algorithms from last class for extracting structure from motion (SfM)?
- What would be a good application area for SfM?
Triangulate from Camera Positions

Can we find locations of A, B, C?

1. Always
2. Sometimes
3. Never

Günay

Computer Vision III – Structure from Motion

Spring 2013
Triangulate from Camera Positions

Can we find locations of A, B, C?

Always
Sometimes
Never
Triangulate from Camera Positions

Can we find locations of A, B, and C?

1. Always
2. Sometimes
3. Never

Günay
Computer Vision III – Structure from Motion
Spring 2013
Triangulate from Camera Positions

Can we find locations of A, B, C?

Always
Sometimes
Never

Günay
Computer Vision III – Structure from Motion
Spring 2013 4 / 13
Triangulate from Camera Positions

Can we find locations of A, B, C?

1. Always
2. Sometimes
3. Never
Can we find locations of A, B, C?

1. Always
2. Sometimes
3. Never
Can we find locations of A, B, C?

1. Always
2. Sometimes
3. Never
Example with Two Cameras
Example with Two Cameras
Example with Two Cameras
Demos:
SfM Examples: 3D Reconstruction From Snapshots

Lots of examples on the Wikipedia page:
- A Fountain
- Duomo of Pisa
- An alley
- Dots and texture
SfM is Also Called “Camera Tracking”

Nowadays, it is even available in open-source programs:

- Blender 3D modeling software:
 see video of its camera tracking plugin
- More on the Wikipedia page
So How Does SfM Work?

Here's the math:

Günay

Computer Vision III – Structure from Motion

Spring 2013
So How Does SfM Work?

Here’s the math:

\[x = \frac{X f}{Z} \]
So How Does SfM Work?

Here’s the math:

\[
\begin{align*}
\begin{pmatrix}
\cos \phi_i & \sin \phi_i & 0 \\
-\sin \phi_i & \cos \phi_i & 0
\end{pmatrix}
\begin{pmatrix}
\cos \varphi_i & 0 & \sin \varphi_i \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \psi_i & \sin \psi_i \\
0 & -\sin \psi_i & \cos \psi_i
\end{pmatrix}
\begin{pmatrix}
P_{x,j} \\
P_{y,j} \\
P_{z,j}
\end{pmatrix}
+ \begin{pmatrix}
b_{x,i} \\
b_{y,i}
\end{pmatrix}

x = X \frac{f}{Z}
\end{align*}
\]
So How Does SfM Work?

Here’s the math:
Non-linear least-squares optimization problem:

- Gradient descent
- Conjugate gradient
- Gauss Newton methods (e.g., Levenberg-Marquardt)
- Singular Value Decomposition (e.g., PCA)
How Many of Those Parameters Can We Recover?

Let’s assume we have

\(m \) camera poses

\(n \) points to recover

Each camera pose has 6 parameters:

3 for \(x, y, z \)

3 for pointing angle \(\alpha, \beta, \phi \)

Each point has 3 parameters:

3 for \(x, y, z \)

Total:

Unknown parameters:

\[6m + 3n \]

Constraints from 2D images:

\[2nm \]

To recover all points, must satisfy:

\[6m + 3n \leq 2nm \]

Which parameters can’t we recover at all?

Absolute frame of reference (\(x, y, z \))

Absolute orientation angle (\(\alpha, \beta, \phi \))

Scale
How Many of Those Parameters Can We Recover?

Let’s assume we have

- m camera poses
- n points to recover

Each camera pose has 6 parameters:

- 3 for x, y, z
- 3 for pointing angle α, β, ϕ

Each point has 3 parameters:

- 3 for x, y, z

Total:

Unknown parameters:

$$6m + 3n.$$

Constraints from 2D images:

$$2mn.$$

To recover all points, must satisfy:

$$6m + 3n \leq 2mn.$$
How Many of Those Parameters Can We Recover?

Let’s assume we have

\[m \] camera poses

\[n \] points to recover

Each camera pose has 6 parameters:

- 3 for \(x, y, z \)
- 3 for pointing angle \(\alpha, \beta, \phi \)

Each point has 3 parameters:

- 3 for \(x, y, z \)

Total:

- **Unknown parameters:** \(6m + 3n \).
- **Constraints from 2D images:** \(2nm \)
How Many of Those Parameters Can We Recover?

Let’s assume we have

\[m \] camera poses

\[n \] points to recover

Each camera pose has 6 parameters:
- 3 for \(x, y, z \)
- 3 for pointing angle \(\alpha, \beta, \phi \)

Total:
- **Unknown parameters**: \(6m + 3n \).
- **Constraints from 2D images**: \(2nm \)

To recover all points, must satisfy:
How Many of Those Parameters Can We Recover?

Let’s assume we have

\(m \) camera poses
\(n \) points to recover

Each camera pose has 6 parameters:
- 3 for \(x, y, z \)
- 3 for pointing angle \(\alpha, \beta, \phi \)

Each point has 3 parameters:
- 3 for \(x, y, z \)

Total:
- **Unknown parameters**: \(6m + 3n \).
- **Constraints from 2D images**: \(2nm \)

To recover all points, must satisfy: \(6m + 3n \leq 2nm \)
How Many of Those Parameters Can We Recover?

Let’s assume we have

\(m \) camera poses
\(n \) points to recover

Each camera pose has 6 parameters:
- 3 for \(x, y, z \)
- 3 for pointing angle \(\alpha, \beta, \phi \)

Each point has 3 parameters:
- 3 for \(x, y, z \)

Total:
- Unknown parameters: \(6m + 3n \).
- Constraints from 2D images: \(2nm \)

To recover all points, must satisfy: \(6m + 3n \leq 2nm \)

Which parameters can't we recover at all?
How Many of Those Parameters Can We Recover?

Let’s assume we have

\[m \] camera poses

\[n \] points to recover

Each camera pose has 6 parameters:

- 3 for \(x, y, z \)
- 3 for pointing angle \(\alpha, \beta, \phi \)

Total:

- **Unknown parameters**: \(6m + 3n \).
- **Constraints from 2D images**: \(2nm \)

To recover all points, must satisfy: \(6m + 3n \leq 2nm \)

Which parameters can’t we recover at all?

- Absolute frame of reference \((x, y, z)\)
Let’s assume we have

\[m \] camera poses

\[n \] points to recover

Each camera pose has 6 parameters:

- 3 for \(x, y, z \)
- 3 for pointing angle \(\alpha, \beta, \phi \)

Each point has 3 parameters:

- 3 for \(x, y, z \)

Total:

- **Unknown parameters:** \(6m + 3n \).
- **Constraints from 2D images:** \(2nm \)

To recover all points, must satisfy: \(6m + 3n \leq 2nm \)

Which parameters can’t we recover at all?

- Absolute frame of reference \((x, y, z)\)
- Absolute orientation angle \((\alpha, \beta, \phi)\)
How Many of Those Parameters Can We Recover?

Let’s assume we have

\(m \) camera poses
\(n \) points to recover

Each camera pose has 6 parameters:

- 3 for \(x, y, z \)
- 3 for pointing angle \(\alpha, \beta, \phi \)

Each point has 3 parameters:

- 3 for \(x, y, z \)

Total:

- **Unknown parameters**: \(6m + 3n \).
- **Constraints from 2D images**: \(2nm \)

To recover all points, must satisfy: \(6m + 3n \leq 2nm \)

Which parameters can’t we recover at all?

- Absolute frame of reference \((x, y, z) \)
- Absolute orientation angle \((\alpha, \beta, \phi) \)
- Scale
How About Motion of Subjects?

Subjects assumed to be static.

Can we also recover structure of moving subjects? (Ask your neighbor)

Always

Sometimes

Never

Remember?
How About Motion of Subjects?

Subjects assumed to be static.
How About Motion of Subjects?

Subjects assumed to be **static**.
Can we also recover structure of moving subjects? (*Ask your neighbor*)

1. Always
2. Sometimes
3. Never
How About Motion of Subjects?

Subjects assumed to be static. Can we also recover structure of moving subjects? (Ask your neighbor)

1. Always
2. Sometimes
3. Never

Remember?
How About Motion of Subjects?

Subjects assumed to be static. Can we also recover structure of moving subjects? (Ask your neighbor)

1. Always
2. Sometimes
3. Never

Remember?

Need to have models of objects:
How Does the Brain Do It?

SfM converts
- From camera images:
- To object locations:
SfM converts

- From camera images: **Egocentric** or viewer-centered representation
- To object locations:
How Does the Brain Do It?

SfM converts

- From camera images: **Egocentric** or viewer-centered representation
- To object locations: **Allocentric** or object-centered representation
SfM converts

- From camera images: **Egocentric** or viewer-centered representation
- To object locations: **Allocentric** or object-centered representation

The brain has **two separate visual pathways** for these:

Ventral is allocentric and dorsal is egocentric. Read more [here](#).