Effect of Simulated I_{to} on Guinea Pig and Canine Ventricular Action Potential Morphology

Min Dong¹, Xiaoyin Sun¹, Astrid A Prinz², Hong-Sheng Wang¹

¹Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
²Department of Biology, Emory University, Atlanta, GA 30322

Running Head: Role of I_{to} in Shaping Cardiac Action Potential

Contact Information: Hong-Sheng Wang, Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575
Phone: (513) 558-2379
Email: wanghai@uc.edu
Abstract

The transient outward current (I_{to}) is a major repolarizing current in the heart. Marked reduction of I_{to} density occurs in heart failure, and is accompanied by significant action potential duration (APD) prolongation. To understand the species-dependent role of I_{to} in regulating the ventricular action potential morphology and duration, we introduced simulated I_{to} conductance in guinea pig and canine endocardial ventricular myocytes using the dynamic clamp technique and perforated patch clamp recordings. The effects of simulated I_{to} in both types of cells were complex and bi-phasic, separated by a clear density threshold of about 40 pA/pF. Below this threshold, simulated I_{to} resulted in a distinct phase 1 notch, and had little effect on or moderately prolonged the APD. I_{to} above the threshold resulted in all-or-none repolarization and precipitously reduced the APD. Qualitatively, these results agreed with our previous studies in canine ventricular cells using whole-cell recordings. We conclude that, contrary to previous gene transfer studies involving the Kv4.3 current, the response of guinea pig ventricular myocytes to a fully-inactivating I_{to} is similar to that of canine ventricular cells, and that in animals such as dogs that have a broad cardiac action potential, I_{to} does not play a major role in setting the APD.

Key Words: dynamic clamp; transient outward current; ventricular myocytes; action potential
Introduction

The transient outward potassium current, or I_{to}, is a key repolarizing current in the heart. The influence of I_{to} on cardiac action potential waveform and duration is remarkably dependent on species. In smaller animals such as mouse and rat, I_{to} is the dominant repolarizing current, and the high levels of I_{to} in these animals are mostly responsible for the short duration and triangular shape of the action potential (2,23,27). In large animals including humans, it is well known that I_{to} is responsible for phase-1 repolarization of the action potential. However, the influence of I_{to} on action potential duration (APD) is less clear. The use of a pharmacological approach in studying the problem is hampered by the lack of specific I_{to} blockers. An alternative method, mathematical simulation, has produced somewhat inconsistent results, predicting that physiological levels of I_{to} do not affect (5,34) or significantly prolong (11) the APD.

In an earlier study, we used the dynamic clamp technique to study the role of I_{to} in shaping the action potential in canine left ventricle (27). The dynamic clamp combines computer simulation with experimental electrophysiology, and allows the introduction of programmable artificial conductances in living cells. We have shown that I_{to}, while being a key regulator of phase 1 repolarization, does not play a major role in regulating the APD over a wide current density range that encompasses the I_{to} densities found in canine ventricular cells. At densities above a threshold (a value that is much higher than the physiological I_{to} levels in canine ventricle), I_{to} precipitously shortens the APD and results in all-or-none repolarization.

Our study also suggests that the difference in I_{to}’s effect on action potential morphology in small and large animals is due, at least partially, to the dramatic difference
in I_{to} density in these species (27). Interestingly, our results in canine ventricular cells contrast with previous studies in guinea pig ventricular myocytes (9,10). Guinea pigs are unusual in their lack of native I_{to} in the heart (4,36), and in the studies by Hoppe et al, exogenous Kv4.3 current was introduced into guinea pig ventricular myocytes by either gene transfer or cell fusion techniques. Introduction of such an I_{to}-type current did not generate a phase 1 notch, but progressively suppressed the action potential plateau and shortened the APD over the same I_{to} density range as what we have tested in canine ventricular cells. The strikingly different observations in canine and guinea pig ventricular cells raise the possibility that guinea pig cells are unique not only in their total lack of native I_{to}, but also in their electrophysiological response to an exogenous I_{to}. It is plausible that due to the peculiar electrophysiological profile of the guinea pig cells, the threshold for all-or-none repolarization in these cells is much lower. As a result, the presence of even low to moderate densities of I_{to} suppresses the development of the action potential plateau and shortens the APD. To test this possibility, and to further understand the species-dependent role of I_{to} in shaping the action potential, in this paper we performed dynamic clamp simulations of I_{to} in guinea pig ventricular cells.

A notable limitation of our earlier study (27) is the use of the whole-cell patch clamp and intracellular Ca$^{2+}$ buffer, which can alter Ca$^{2+}$ intracellular handling and affect the action potential properties. In the present study, to preserve physiological intracellular Ca$^{2+}$ handling we used the perforated patch clamp for all action potential recordings. We carried out simulation studies of I_{to} in canine endocardial myocytes using the perforated patch clamp to verify our earlier results, and to allow side-by-side comparison of canine and guinea pig ventricular cells.

Copyright Information
Materials and Methods

Preparation of isolated guinea pig and canine ventricular myocytes

Handling and usage of animals were in accordance with protocols approved by the University of Cincinnati Institutional Animal Care and Use Committee. Adult guinea pigs weighing 200-250mg of either sex were anaesthetized by intraperitoneal injection of sodium pentobarbital (150mg kg$^{-1}$ body weight). Hearts were then quickly excised and mounted on a Langendorff perfusion apparatus, and perfused with oxygenated Ca$^{2+}$-free and then Ca$^{2+}$-containing (1.5 mM) solution for 5 minutes each. The perfusion solution contained (in mM): NaCl 112, KCl 5.4, NaH$_2$PO$_4$ 1.7, MgCl$_2$ 1.63, NaHCO$_3$ 4.2, HEPES 20, Glucose 5.4 and Taurine 10 (pH = 7.6). This was followed by perfusion with the same solution containing zero Ca$^{2+}$ and 85 unit ml$^{-1}$ collagenase (type II, Worthington) at 37°C until the hearts became flaccid. The ventricles were removed and minced and pipette-triturated in oxygenated KB solution containing (in mM): KCl 83, K$_2$HPO$_4$ 30, MgSO$_4$ 5, Na-pyruvate 5, ß-OH butyric acid (sodium salt) 5, taurine 20, creatine 5, glucose 10, EGTA 0.5, HEPES 5, and Na$_2$ATP 5 (pH = 7.4). Cells were stored in the KB solution at room temperature and used on the day of isolation.

Adult dogs of either sex were euthanized with an intravenous injection of sodium pentobarbital at a concentration of 80 mg kg$^{-1}$ body weight. The heart was excised and a wedge-shaped left ventricular free wall was dissected. The tissue was then cannulated via a descending branch of the left circumflex artery and perfused with an oxygenated solution containing (in mM): NaCl 135, KCl 5.4, MgCl$_2$ 1.0, NaH$_2$PO$_4$ 0.33, HEPES 10, and glucose 10 (pH = 7.4), and then with the same solution containing 140 unit ml$^{-1}$ collagenase (type II, Worthington), 25 µM leupeptin and 0.32 unit ml$^{-1}$ protease (type
XIV, Sigma) at 37°C for 10-15 min. Thin slices of tissue (<2 mm in thickness) were then removed from the endocardial surface, minced and gently shaked in the presence of a lower concentration of collagenase (110 unit ml⁻¹). Isolated myocytes were harvested and stored in a standard Tyrode solution containing 0.1 mM Ca²⁺ at room temperature or 4°C, for recordings on the same day or the following day.

Electrophysiological recordings

Isolated cells were perfused with Tyrode’s solution containing (in mM): NaCl 140, KCl 5.4, MgCl₂ 1, CaCl₂ 1.8, HEPES 5, and glucose 10 (pH = 7.4). Perforated patch-clamp recordings were used for action potential recordings and the dynamic clamp studies. Glass pipettes were back-filled with a pipette solution containing (in mM): K-aspartate 110, KCl 20, NaCl 8, HEPES 10, MgCl₂ 2.5, CaCl₂ 0.1, and 240 mg/ml amphotericin B (pH adjusted to 7.2 with KOH), and have a resistance of 1.5 – 2.0 MΩ. Cells were studied once stable series resistance <7 MΩ was achieved; cells with unstable or a higher series resistance were rejected. Series resistance was fully compensated under current clamp. For K⁺ current recordings, whole-cell patch clamp recordings were used. 0.2 mM CdCl₂ was added to the external solution to block the Ca²⁺ current. Pipette solution contained (in mM): K-aspartate 110, KCl 20, EGTA 10, HEPES 10, MgCl₂ 2.5, NaCl 4, CaCl₂ 1, Na₂-ATP 2, and Na-GTP 0.1 (pH adjusted to 7.2 with KOH). Both perforated and whole-cell patch clamp recordings were performed with an Axopatch-1B amplifier. Data were collected using PCLAMP9 software through an Axon Digidata 1322A data acquisition system. All experiments were performed at 34°C with the
exception of \(I_K \) recordings, which were carried out at room temperature (24°C). All chemical and drugs were from Sigma unless otherwise stated.

Implementation of the dynamic clamp

Dynamic clamp experiments were performed as previously described (27). A modified version of the Windows-based DynClamp software was used in the dynamic clamp studies (21). Voltage sampling of the dynamic clamp software and output of the current injection command were through an Axon Digidata 2100 board.

\(I_{to} \) was defined as a rapidly and fully inactivating outward current, and was formulated based on our previous canine epicardial \(I_{to} \) model (27). Modifications were made to account for shifts of the voltage-dependence of \(I_{to} \) gating properties by external \(\text{Cd}^{2+} \) (26,33). The \(I_{to} \) conductance was given by:

\[
I_{to} = g_{to} m_h R (V_m - E_K)
\]

\[
R = \exp \left(\frac{V_m}{300} \right)
\]

\[
\alpha_m = \frac{4}{1 + \exp \left(\frac{V_m - 25}{-20} \right)}
\]

\[
\beta_m = \frac{3.5}{1 + \exp \left(\frac{V_m + 110}{29.5} \right)}
\]

\[
m_{\infty} = \frac{1}{1 + \exp \left(\frac{V_m + 13.9}{-8} \right)}
\]

\[
\alpha_h = \frac{0.016}{1 + \exp \left(\frac{V_m + 59}{5.5} \right)}
\]

\[
\beta_h = \frac{0.11}{1 + \exp \left(\frac{V_m + 27}{-6.5} \right)}
\]
\[h_{\infty} = \frac{1}{1 + \exp((V_m + 50.3)/3.9)} \]

Figure 1 shows the waveform, true peak conductance-voltage relationship, and voltage-dependencies of steady-state and time constants of the m and h gates of the model \(I_{lo} \). \(E_K \), the reversal potential for \(K^+ \), was set to –85 mV. The electrode junction potential was 12 mV, and was corrected on-line in the computation. Action potentials were triggered with just-threshold 2 ms current steps and recorded at steady-state. Action potentials were re-controlled after each simulation. Because \(g_{lo} \) in equation 1 does not equal the true simulated \(I_{lo} \) conductance, the true peak current density in response to a depolarizing step from –80 mV to +40 mV is given to indicate the amplitude of the simulated \(I_{lo} \) unless otherwise stated.

Data analysis

Group data are presented as means ± S.E.M. Statistical tests of the effects of the dynamic clamp simulation were performed using paired, two-tail Student’s t-tests. Other statistical tests used unpaired Student’s t-tests. A t value giving \(P < 0.01 \) was considered as significant.
Results

Electrophysiological properties of guinea pig ventricular myocytes

We first examined the action potentials of guinea pig ventricular cells using the perforated current clamp. Figure 2A shows representative action potentials triggered at 1 and 3 Hz. Notably, the action potentials lacked phase 1 repolarization, and had a waveform similar to that in canine endocardial ventricular cells (27). The average APD\textsubscript{90} at 1 Hz was 196.4 ± 12.1 ms (n = 18), and was abbreviated to 137.4 ± 9.9 ms at 3 Hz (n = 6). Consistent with their lack of phase 1 notch, whole-cell voltage clamp recordings showed no detectable I\textsubscript{to} in guinea pig ventricular cells (Fig 2B). By comparison, in response to the same voltage clamp protocol and under the same recording conditions, a robust I\textsubscript{to} was evident in canine epicardial cells (Fig 2B, inset). Repolarizing currents in guinea pig ventricular cells were dominated by a large delayed rectifier, or I\textsubscript{K} (Fig 2C).

Dynamic clamp simulation of I\textsubscript{to} in guinea pig ventricular cells

To understand the role of I\textsubscript{to} in shaping the action potential, we introduced a simulated canine ventricular I\textsubscript{to} conductance in guinea pig ventricular cells using the dynamic clamp. Action potentials were triggered at 1 Hz and recorded at steady-state. Simulation of a typical canine epicardial-sized I\textsubscript{to} in guinea pig ventricular cells produced a distinct phase 1 notch and a “spike-and-dome” action potential configuration, but did not significantly affect the APD (Fig 3A). The use of the perforated patch clamp presented a challenge for the implementation of the dynamic clamp. We only studied cells with stable series resistance <7 MΩ, which was carefully monitored and fully
compensated. The dynamic clamp output (Fig 3A, inset) and the voltage traces were without oscillation or distortion.

We examined the density-dependent effect of simulated I_{to} on the action potential. Over a wide density range, simulated I_{to} produced a distinct phase 1 notch and a spike-and-dome action potential waveform (Fig 3B). Low densities of I_{to} did not significantly affect the APD (Fig 3B, left); as the I_{to} density was further increased, the APD was moderately prolonged (Fig 3B, left, bold line) before reaching a threshold at which point the action potential alternated between one with a deep notch and a markedly prolonged APD and all-or-none repolarization (Fig 3B, right, bold lines). Any simulated I_{to} larger than the threshold produced a brief, spike-like action potential (Fig 3B, right). Figure 3C shows the I_{to} density-APD$_{90}$ relationships for the 18 guinea pig cells we studied, and the average data are shown in figure 3D. When the simulated I_{to} was 21.9 ± 5.3 and 27.3 ± 6.2 pA/pF, APD$_{90}$ was not significantly changed (0.98 ± 0.05 and 1.00 ± 0.04 times the control value, $n = 16$ and 14, respectively; $P > 0.2$). Prolongation of APD was observed with 33.2 ± 5.5 and 39.4 ± 5.6 pA/pF of I_{to}, which resulted in APD$_{90}$ values of 1.06 ± 0.05 and 1.18 ± 0.06 times control, respectively ($n = 18$ for both, $P < 0.01$). Larger I_{to} produced dramatic shortening of the APD: APD$_{90}$ ratio was reduced to 0.21 ± 0.11 with a simulated I_{to} of 43.9 ± 5.9 pA/pF ($n = 11$, $P < 0.001$).

Dynamic clamp simulation of I_{to} in canine endocardial myocytes

To allow comparison between guinea pig and canine ventricular cells, and to verify our earlier I_{to} simulation results in canine ventricular cells, we performed dynamic clamp simulations of I_{to} in canine endocardial cells using the perforated patch clamp. The
overall effect of simulated I_{to} on canine endocardial APD was similar to that in guinea pig cells (Figs 3 & 4), and qualitatively similar to our earlier results (27). Low levels of I_{to} had little effect on the APD; further increases in I_{to} density progressively and moderately prolonged the APD before collapsing the plateau and markedly shortened the APD (Fig 4). When the simulated I_{to} was 22.8 ± 1.7 and $28.6 \pm 2.0 \, \text{pA/pF}$, the APD$_{90}$ ratios over control were 1.02 ± 0.01 and 1.05 ± 0.01, respectively ($n = 8$ and 5, $P > 0.02$ and < 0.01, respectively). APD$_{90}$ was further prolonged to 1.12 ± 0.02 and 1.19 ± 0.03 times control with a simulated I_{to} of 33.2 ± 1.5 and $40.2 \pm 1.9 \, \text{pA/pF}$, but was shortened to $19 \pm 0.3\%$ of control with an I_{to} of $44 \pm 2 \, \text{pA/pF}$ ($n = 7$, $P < 0.01$ for all groups).

Effect of model formulation and stimulation rate

Compared to pure mathematical modeling, the dynamic clamp has the advantage of working with real, living cells, but still involves simulation of artificial conductances. To determine whether our I_{to} simulation results are unique to the particular formulations of our canine epicardial I_{to} model or instead represent a true I_{to} effect, we performed simulations of an atrial I_{to} model (24) in guinea pig ventricular cells, and compared its effects with those of our ventricular I_{to} model. An example of such simulation is shown in figure 5. The two models used in the study are entirely unrelated and described by different formulations. The I_{to} conductances described by the two models have markedly different activation rates, conductance-voltage relationships, and steady-state inactivation properties. These differences resulted in noticeably different waveforms of dynamic clamp current output when simulated in the same guinea pig ventricular cell (Fig 5 A & C, insets). Nevertheless, the effects of the two I_{to} models on action potential morphology
and duration were remarkably similar (Fig 5 A & C), so were the shapes of the I_{to} conductance-APD$_{90}$ relationship curves (Fig 5 B & D). Similar experiments were performed in a total of 5 guinea pig cells, and in 3 canine endocardial myocytes (data not shown). These findings argue that to the extent that these models describe a generalized I_{to} conductance, our simulation results are a representation of the true I_{to} functional property.

Guinea pigs have a heart rate over 200 beats per minute. At a higher and more physiological rate, cumulative activation of I_K would favor repolarization of the action potential. We therefore performed simulation studies of I_{to} at pacing rates of 1 and 3 Hz. Simulation of I_{to} at 3 Hz had generally similar effects on guinea pig action potential as observed at 1 Hz (Fig 5E), although a higher density of I_{to} was needed at 3 Hz to achieve all-or-none repolarization (Fig 5F). This shift of the I_{to} density-APD$_{90}$ curve at 3 Hz towards a higher I_{to} density probably reflects a higher degree of cumulative I_{to} inactivation at a higher pacing frequency.

Effect of sustained outward current on APD

Our dynamic clamp simulation results in guinea pig ventricular cells differ markedly from those using the gene transfer or cell fusion approaches to introduce Kv4.3 currents in the cells (9,10). In these earlier studies, a sustained outward current was generated in the ventricular cells along with the transient I_{to}-like current. A previous computer modeling study suggested that the introduction of such a non-inactivating current contributed to the shortening of the APD by the exogenous Kv4.3 current (6). To test this prediction in real guinea pig ventricular cells, we performed simulations of a
modified canine epicardial I_{to} model that had a non-inactivating component. Again, simulation of a fully inactivating I_{to} had the typical bi-phasic effect on action potential waveform and duration in guinea pig cells (Fig 6A). In the same cell, simulation of an I_{to} with a 10 to 16% sustained component (a fraction similar to those in Hoppe et al’s studies) progressively and significantly suppressed the plateau and shortened the APD over the entire density range we tested (Fig 6B). With the presence of the sustained current, I_{to} density had a monotonic inverse relationship with APD_{90}, instead of the bi-phasic relationship when the simulated current fully inactivated (Fig 6C). Similar results were obtained in a total of 4 guinea pig cells. Results shown in figure 6B & C closely reproduced the observations in Hoppe et al’s studies, suggesting that the presence of a sustained outward current accounted for the monotonic shortening of APD by I_{to} in these earlier studies.
Discussion

Although the action potential waveform in guinea pig ventricular cells shares similarities with those of endocardial ventricular myocytes in large animals such as dog, the underlying ionic current distribution profile in guinea pig and large animals are significantly different. I_K is more prominent in guinea pig ventricular cells than in canine ventricle (15,17), and is balanced by a significantly larger L-type Ca^{2+} current (8,30). Indeed, it was shown that the effect of exogenous Kv4.3 current on action potential in guinea pig ventricular cells (9,10) is distinct to that of I_{to} in canine ventricular cells (27).

In the present study, we used the dynamic clamp technique to simulate I_{to} conductances in guinea pig and canine ventricular myocytes, and have shown that, despite the significant differences in cellular electrophysiological background of the two myocytes, the effects of a fully-inactivating I_{to} on the action potential morphology and duration of these two types of myocytes were remarkably similar. Importantly, a distinctive threshold (about 40 pA/pF) existed that separated the effect of I_{to} into two phases. Below this threshold, increasing amounts of simulated I_{to} 1) generated an increasingly deep phase 1 notch, and 2) did not significantly affect the APD at low densities and moderately prolonged the APD at higher densities. I_{to} above the density threshold led to all-or-none repolarization, resulting in spike-like action potentials with dramatically reduced APD. These effects of I_{to} are not linked to the particular mathematical formulations of the I_{to} model, or a specific stimulation rate. Our experimental results are in agreement with the predictions of a modeling study of canine and guinea pig ventricular cells (6), and probably reflect a general role of the I_{to} conductance in regulating the morphology of broad, plateau Possessing cardiac action potentials.
The underlying mechanism of the bi-phasic APD-I_{to} relationship probably lies in the interplay between I_{to} and the L-type current (I_{Ca-L}), as suggested by the modeling study (6). It is clear from our simulation studies that the voltage trajectory at the end of phase 1 repolarization depends on the potential of the notch. I_{to}, via its regulation of phase 1 notch potential, either allows reactivation of I_{Ca-L} at the end of phase 1 and the development of the plateau (or the “dome”), or turns off I_{Ca-L} by moving the notch potential below the activation voltage range of I_{Ca-L}, and completely suppresses the plateau. Prolongation of the APD occurs when I_{to} causes a delay in the reactivation of I_{Ca-L} and a shift in I_{Ca-L} time course. In our experiments, the average notch potential for such transition between reactivation and deactivation of I_{Ca-L} was around -20 mV for guinea pig ventricular cells, and -24 mV for canine endocardial myocytes.

In our present study, we used perforated-patch clamp recording to preserve physiological intracellular Ca$^{2+}$ handling, and reexamined the effect of I_{to} in canine endocardial cells. Under these conditions, simulation of I_{to} in canine endocardial cells generated action potential waveforms that were remarkably similar to those recorded from canine epicardial tissue or myocyte using microelectrode recordings (13,14,16,18). The APD-I_{to} density relationship is qualitatively similar to our previous findings using whole-cell recordings (Fig 4 of (27)), but with a few noticeable differences. The small depression of APD when I_{to} was around 30 pA/pF was not found in the current study, and was probably an artifact associated with intracellular Ca$^{2+}$ buffering. Instead, progressive APD prolongation was observed over the entire I_{to} density range from ~28 pA/pF to the threshold for all-or-none repolarization. Importantly, in our present study we found that simulation of canine epicardial level of I_{to} (about 20 pA/pF) did not significantly affect
the endocardial APD, supporting our previous conclusion that physiological levels of I_{to} do not play a significant role in regulating the APD in canine left ventricle. The same, however, cannot be said about I_{to} in canine right ventricular cells. I_{to} density is significantly higher in canine right epicardium than in the left (3,25). Assuming that the APD-I_{to} density relationship shown in figure 4 is shared in right ventricular cells, I_{to} probably moderately prolongs the APD in the right ventricular cells.

I_{to} is conventionally defined in modeling studies as the fully and rapidly inactivating component of the total outward current. Such definition is supported by experimental evidence. It is shown that in mouse ventricular cells, I_{to} inactivates fully and is separate from the non-inactivating outward currents (35). In human atrial and mouse ventricular cells, antisense suppression or functional knockout of the Kv4-generated I_{to} leaves the non-inactivating current intact (1,7,31), arguing that in these native systems, I_{to} and the non-inactivating component are carried by channels with different molecular identifies. For these reason, we defined and modeled I_{to} as a fully-inactivating conductance in our simulation studies. With the simulation of even a small sustained conductance, the bi-phasic APD-I_{to} relationship in guinea pig cells was dramatically changed to a monotonic inverse relationship strikingly similar to those reported earlier (9,10). Simulation of a sustained conductance also eliminated the notch, and suppressed the plateau, closely reproducing Hoppe et al’s results. These results point to the importance of the I_{Kur}-type sustained current in regulating the action potential morphology. The marked effects of the sustained current are not surprising considering the small net current during the plateau phase. In canine ventricular cells, I_{to} inactivation is rapid and near-complete (Fig 2B). We argued in our earlier study that the large I_{to} size
in smaller animals such as mouse is responsible for their brief action potentials (27). In addition to a large I_{to}, prominent slowly inactivating and non-inactivating currents are present in mouse ventricle (35). These currents, when combined, can make up over half of the total outward current amplitude (35). It is likely that the presence of such slow and sustained currents also contributes importantly to the brief, spike-like action potential in mouse ventricle. In this case, species difference in cardiac action potential morphology is achieved by changes in both channel expression level and function.

Sudden cardiac death, mostly caused by ventricular arrhythmias, is responsible for about half of the mortalities in heart failure patients (20). One of the most characteristic electrophysiological changes in heart failure is the prolongation of the APD, which is believed to predispose the heart to afterdepolarization and reentrant arrhythmias (29). Accompanying the prolongation of APD, down-regulation of I_{to} is consistently observed in heart failure patients as well as animal models (20,28,32). Based on their close correlation, it was proposed that I_{to} down-regulation is an important contributor to APD prolongation in failure (12,32). This is likely to be true in smaller animals, where I_{to} is much beyond the density threshold for all-or-none repolarization (27) and is the major determinant of APD. The same conclusion may not apply to large animals such as humans (22), as the role of I_{to} in regulating action potential morphology differs significantly between small and large animals. I_{to} in canine (27) and human (19) left ventricle is well below the density threshold for all-or-none repolarization, and our APD-I_{to} density curves show that within this density range, reduction of I_{to}, regardless of the magnitude, will not prolong the APD under physiological conditions. In heart failure, a concerted change in ion channel expression occurs (33), and the APD-I_{to} density
relationship reported in our study may be altered as a result of the remodelings of the cellular electrical background. Also, it is possible that downregulation of the Kv4 channel causes a concomitant decrease in the sustained component of the outward current, thereby resulting in APD changes. It would be important to expand our simulation studies to hypertrophy and failure settings.
References

15. **Liu DW and Antzelevitch C.** Characteristics of the delayed rectifier current (I_{Kr} and I_{Ks}) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker I_{Ks} contributes to the longer action potential of the M cell. *Circ Res* 76: 351-365, 1995.

Figure Legends

Figure 1. Mathematical modeling of the canine epicardial I_{to}. A, waveform of the model I_{to} in response to voltage steps ranging from -60 to 50 mV, from a holding voltage of -80 mV. B, peak conductance and time constant of the activation (m) gate of the model I_{to} at various voltages (left), and steady-state and time constant of the inactivation (h) gate at various voltages (right).

Figure 2. Electrical properties of guinea pig ventricular myocytes.
A, representative action potential traces recorded from guinea pig ventricular myocyte at 1 Hz and 3 Hz. B, I_{to} is not present in guinea pig ventricular cells, but was readily detectable in canine epicardial cells (inset). Cells were depolarized to voltages ranging from -30 to +50 mV in 10 mV increments, from a holding potential of -70 mV at a frequency of 0.1 Hz. Notice the difference in current scales. C, I_k recorded from guinea pig ventricular myocyte at room temperature (24°C). Currents were in response to depolarizing steps ranging from -30 to +50 mV in 10 mV increments, from a holding potential of -40 mV. Tail currents were recorded at -40 mV.

Figure 3. Dynamic clamp simulation of I_{to} in guinea pig ventricular myocytes.
A, action potentials recorded at 1 Hz from a guinea pig ventricular myocyte under control conditions (dash line) and with the simulation of a canine epicardial I_{to} (25 pA/pF) using the dynamic clamp (solid line). Bottom trace is the current output of the dynamic clamp. Inset shows the current output on a larger scale. B, action potentials recorded from a
guinea pig ventricular myocyte with the simulation of incremental densities of I_{to}. The “threshold” phenomenon with $I_{to} = 48$ is shown in the right panel indicated by bold lines.

C, action potential duration (APD_{90}, expressed as the ratio over control) versus I_{to} density relationships collected from 18 guinea pig ventricular myocytes. The average data are shown in D. Individual traces were aligned such that the last points before all-or-none repolarization fell into one group. Vertical and horizontal error bars are ± S.E.M. of the APD_{90} ratio and I_{to} density, respectively. Asterisks indicate a statistical significance of $P < 0.01$ in a paired Student’s t test.

Figure 4. Dynamic clamp simulation of I_{to} in canine endocardial ventricular myocytes.

A, action potentials recorded from a canine endocardial myocyte with various densities of simulated I_{to}. For the left panel, I_{to} density ranged from 5.6 to 33 pA/pF, in increments of about 5.6 pA/pF. B, average APD_{90} ratio vs. I_{to} density relationship for canine endocardial cells. Data are averaged and plotted as described in figure 3 from 7 cells. Asterisks indicate a statistical significance of $P < 0.01$ in a paired Student’s t test.

Figure 5. Simulations of different mathematical I_{to} models in guinea pig ventricular cells and at different pacing rates.

Action potentials recorded from a guinea pig ventricular myocyte with various levels of I_{to} simulated based on canine ventricular I_{to} model (A) and canine atrial I_{to} model (C) (14). The insets show the current output of the dynamic clamp. The APD_{90} ratio vs. I_{to} conductance relationships for A and C are shown in B and D. E, action potential traces
from a guinea pig ventricular cell with incremental densities of simulated canine epicardial I_{to} at pacing rates of 3 Hz. F, APD_{90} vs. I_{to} density relationships at 1 and 3 Hz for the same cell as in E.

Figure 6. Effect of a sustained component in I_{to} on action potential shape and duration.

A, action potentials from a guinea pig ventricular cell with simulation of incremental densities of I_{to} from 8.8 to 60 pA/pF, in increments of ~ 8.8 pA/pF. B, action potentials from the same cell with various densities of simulated I_{to} that had a non-inactivating (sustained) component. Total simulated I_{to} density ranged from 8.9 to 44 pA/pF, in 8.9 pA/pF increments. The sustained component was 16% of the total peak current when elicited by a voltage step to +40 mV from a holding potential of -80 mV. C, APD_{90} ratio vs. I_{to} density relationships from the same cell with simulations of I_{to} that had various fractions of sustained component (I_{s}).
Figure 1
Figure 2
Figure 3
Figure 4

A

- Control
- $I_{to} = 33$

B

- Control
- $I_{to} = 40$
- $I_{to} = 44$

APD$_{50}$ ratio

I_{to} density (pA/pF)
Figure 5

A. Canine vent I_o model

B. APD_{De} ratio vs. I_o (nS)

C. Canine atrial I_o model

D. APD_{De} ratio vs. I_o (nS)

E. 3 Hz

F. APD_{De} ratio vs. I_{io} (pA/pF)
Figure 6

A. $I_{\text{sustained}} = 0$

- Control
- $I_0 = 43$
- $I_0 = 60$

B. $I_{\text{sustained}} = 16\%$

- Control
- $I_0 = 44$

C. A-PDE ratio

- $I_c = 0$
- $I_c = 10\%$
- $I_c = 16\%$

40 mV

100 ms

I_0 density (pA/pF)